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Abstract
The paper presents a theory of stochastic evolution equations
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r INTRODUCTION ;
3 i
; The aim of this paper is to present a theory of stochastic evolu-

$ - tion equations governing processes that take values in duals of

? countably Hilbertian nuclear spaces. For Hilbert or Banach space

% valued processes such studies are available, e.g. in Curtain and Prit-

;; chard [3] and Kotelenez and Curtain [9].

) In recent work arising from problems in such diverse fields as

o chemical kinetics, n-particle diffusions and neurophvsiology, one

N comes up with a situation where a sequence of stochastic processes

EE of interest converges weakly to an =»-dimensional process satisfying

:‘ a stochastic evolution equation on a suitable space of distributions.

; It is, therefore, of interest to develop a general theorv of the

.& existence and uniqueness of solutionsof stochastic evolution equa-

é' ) tions in a dual ¢' of a nuclear space ¢ where the driving force is

a ¢'-valued martingale. We do this in Section 2 where we obtain an
"evolution” or "mild solution" in the form of a stochastic integral
.w@th respect to the given (¢'-valued) martingale. A feature of
these equations is that in general, over any finite interval [0,T7],
the solution lives in a Hilbert space ¢éT while, when no finite in-
terval is specified it can only be asserted that it takes values

ik RN

r in ¢'.
(0
E.)
j We have to preface the stochastic part of our work by a study of
>
j deterministic evolution systems (including perturbed systems) de-
f * fined on countably Hilbertian nuclear spaces. In applications, one
o
b~ is led to consider evolution systems on ¢' in the following manner.
" )
{j Initially the problem is defined on a Hilbert space H with a family
~; of infinitesimal generators TA(t)}. It is often the case that we 1
*
o can find a Gelfand triplet »<«sH<> %' (with 9 a countably Hilbertian
3 s
4
[
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* nuclear space) such that the restriction A(t) of A(t) on ¢ is a

o continuous linear operator on ¢. Thus one is led to the question

-
-
>,

of when the family {A(t)} generates an evolution system on % or,

equivalently on ¢'. This is the problem considered in Section 1.

T, -
«

2 The theory of evolution systems on Hilbert and Banach spaces has
% been developed extensively by a number of authors. They are con-
%{ stru~-ed from (unbounded) infinitesimal generators {A(t)} of CO—

;h semigroups. Evolution systems over locally convex spaces have been
2 constructed from Co—equicontinuous semigroups by K. Yosida [19] and
,g from quasi-equicontinuous Co—semigroups by Y.H. Choe [21].

:; We have not been able to find results of sufficient generality
. that we could use, viz., results on evolution systems on nuclear

Eé spaces constructed from (Co,l)—semigroups. We derive these systems
'5 using the ideas from Kato's theory of evolution equations on Banach

y spaces (see Pazy [16], Chapter 5). A key notion in this construction

L &

is that of a stable family of generators or semigroups on 9.

)
fﬁ In the last section, the theory developed in Section 2 is applied
.t to examples arising in various fields of applications. The sto-
?f: chastic equations of Hitsuda and Mitoma, Kallianpur and Wolpert,
_f' Kotelenez, and Mitoma (4,7,8,14] are shown to be particular cases of
< the equations of Section 2 and so the existence of a uniTue solution
¢
“\
J
N follows as a consequence of Theorem 2.1. It also follows that all
L%
‘ the examples possess a family of stable generators. Mitoma's example
; in [l14]) is particularly interesting in that the evolution system is '
)
EE generated by a stable family of (Co,l)-semigroups which are not
b
%: equicontinuous.
L
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o
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1. EVOLUTION AND REVERSED EVOLUTION OPERATORS

Let ¢ be a countably Hilbertian nuclear svace whose topology T

is defiaed by an increasing sequence of Hilbertian norms
. o ! < <
| g T S

9, the topological dual of o |

!

° |nl

+!<.... Let @n be the completion of % by

- the dual norm of @A and ?' be

the strong topological dual of ¢. The completeness of ¢ implies

|=°°l
Qn and ¢ ngl¢n'

We denote by L(9,d) (respectively L(9',d')) the class of continuous
linear operators from ¢ to ¢ ($' to ¢').

A two parameter family of operators {U(t,s) : 0 <s st <®} in
L(%',%"') is said to be an evolution system on %' if the following
two conditions are satisfied:

(1) U(t,t) =I, U(t,r)U(r,s) =U0(t,s) 0 <s <r <¢t,

{(ii) For each y - ?' the map (s,t) ~U(t,s)y is strongly continuous.

we

racall that for % and ¢' strong and weak convergence of sequences coincide.

o )
Let (A (t)'tEO

of operators generates the evolution system {U(t,s) : 0 <s <t <w»!

be a family in L[($',¢'}). We say that this family

if the following relations are satisfied:

é%u(t,s)w =A'(t)U(t,s)y for all y «¢d' Q0 <s <t

dsU(t ,S)y ==-U(t,s)A' (s)y for all yw <&' 0 <s <t.

For s =t define the operator T(s,t) : ¢ -9 by the relation

(1.1) (U(t,s)p) sl = 9[T(s,t)s] for all ¢ <%, p «9".
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x

In a similar way for each t : 0 define the continuous linear operator A(t): @ -~ | by
(1.2) (A' (B)w) (o] = w(A(t)e] for all ¢ <%, y = O

Then it is not difficult to verify that the continuous linear

operators {T(s,t) :0 <s <t <=} on $ have the following properties:

(1.3) T(s,t) = T(s,r)T(r,t) O0sssrst, T(t,t) =1I.
(1.4) For each ¢ ¢ % the map (s,t) ~T(s,t)¢ is d-continuous.
(1.5) a%r(s,t)o = T(s,t)A(t)s for all $ & 0 <s <t.

(1.6) é%T(s,t)¢ -A(s)T(s,t)d for all ¢ ¢d 0 <s <t.

Definition 1l.1. A two parameter family of operators T (s,t)

0 <s=<t in [(¢,9) is said to be a reversed evolution system if it
satisfies (1.3) and (1.4) above. If a family {A(t)}tzo of linear
operators on ¢ satisfies equations (1.5) and (l1l.6) we say that
{A(t)}tzo generates the reversed evolution system T(s,t). Relations
(1.5) and (1.6) are called the forward and backward equaticns.

The main result of this section is Theorem 1.3 below where we
give sufficient conditions on a family of linear operators on @ to
generate a reversed evolution system {T(s,t) :0 <s <t <=} on %.
Using the relations (1.1) and (1l.2) we then have that the family
{A'(t)}tzo of linear operators on %' generates an evolution system
{u(t,s) :0 <s <t <=} on ¢'. It will be convenient to denote U(t,s) by

T'(t,s) and refer to it as the adioint of T(s,t). This is particu-

larly convenient when T(s,t) is the primary object in our discussion.

Our results and examples on this work deal with semigroups of

linear operators on ¢ which are not necessarily equicontinuous as
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those presented in Yosida [20] for locally convex spaces or

Miyadera [15] for Fréchet spaces. We have to deal with semigroups

of linear operators of (Co,l)—class defined below. The terminology

is due to Babalola who has studied such semigroups on locally convex spaces [l].

Definition 1.2. A family {S(s) :s 20} of linear operators on % is

said to be a (Co,l)~semigroup if the following three conditions are

satisfied:

(1) S(sl)S(sz) = S{(s +sz) for all s

2 20, S(0) =1I.

1 15

(2) The map s +S(s)¢ is d-continuocus for each ¢ ¢ ¢.

(3) For each g 20 there exist numbers Mq,oq and p 2gq such that

0.8
q | o] for all ¢ e¢, s 20.

S{(s <M
=X )®|q qe p

We recall that a semigroup S(s) is called a Co-semigroup if it

satisfies (2) above. It is said to be an ejuicontinucus semigroup

if it satisfies (1)~-(2) and (3) with oq =0, g 20. Thus equicontin-

uous semigroups are specilal types of (Co,l)-semigrOups. The case

of Jq =g, 20 1is considered in [15] and [21].

The next two theorems characterize (Co,l)-semigroups. Before

presenting them we introduce some notation: Let {S(s) :s 20} be

a (Co,l)-semigroup on 9. The infinitesimal generator A of S(s) 1is

defined as

S(s)d - ¢

S (limit in 9)

A = lim
s+0

whenever the limit exists, the domain of A being the set D(A) - %

for which the above limit exists.




il

Let {!

{n,:n 20} be any sequence of increasing norms on 3 also
defining the t-topology of ¢&. Such a sequence of norms will hence-

forth be called t-compatible. We will denote by ®lnl the ll-{n

completion of $. Then ¢ < ¢ c¢ for n2m and ¢ = nm_ Q.
" n| T T m] n=0"n|
Suppose that A :D(A) c¢ +d is a densely defined closed linear

operator. If for some n 20 the linear operator

A :D(A) C‘I’Inl - ¢ CQ]n|

is closable in anl, then we denote by An the closure of A in Q‘n"
RO

The proofs of the following two results involve standard argu-

ments and are therefore omitted.

Theorem 1.1 (a). A Co-semigroup {s(s): s20} on ¢ is a (Cyr 1) -
semigroup if and only if there exists a sequence of t-compatible

norms {||*

!n: n20} on 9 and sequences of nonnegative numbers

{o_}

n'nso0 such that for each n=z0

g._.s
(1.7) [{s(s)yelf <e’ ¢l for all ¢ « &, s = O.

(b). If {S(s): s=0} is a (Co,l)—semigroup on ¢ then there exists

a family of Banach spaces {¢]n : n20} whose norms {'|+'' : n -0}

are t-compatible, such that for each n>0 S(s) can be extended to

a Cy-semigroup {s"(s): s20} of linear operators on ®{ni.
|
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Theorem 1.2. A necessary and sufficient condition for a closed

linear operator A on ¢ to be the infinitesimal generator of a
unique (Cys1)-semigroup {sS(s) :s 20} on ¢ is that
(1) D(A) is dense in 9.

(2) There exists a sequence of T-compatible norms {]-

f tn 20} on
‘n

¢ and n, 20 such that for each n zno the following two conditions

hold:

(a) A is closable in ¢In'.

(b) The closure A, of A in ®|nl is the infinitesimal generator

of a Co—semigroup {s"(s) :s 20} on ¢

Sn(s) maps ¢ into ¢ and its restriction to ¢ coincides with S(s).

lnl such that for s =20

The following is a perturbation result for (Co,l)-semigroups on .

Proposition 1.1. Let A be the infinitesimal generator of a (Co,l)-

semigroup {S(s) :s 20} on ¢. Let B be a continuous linear operator

on ¢ such that there exists a sequence of T-compatible norms

t

ﬂln :n 20; on ¢ and ng =0 such that for n zn, B can be extended
to a continuous linear operator on anl' Then A +B 1s the infini-
tesimal generator of a (Co,l)-semigroup {P(s) :s 20} on ¢ satisfying

the integral equation

S
P(s)d = S(s)d + [S(s ~r)BP(r)odr ¢ < b.
0
Proof: Use Theorems 1.1, 1.2 and the classical perturbation theoren

for semigroups in Banach spaces (Theorem 3.4.2 in [17]). o

We now consider the construction of reversed evolution systems

on . In order to do this we need to introduce the following con-

cept.

........
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Definition 1.3. A family {A(t)} of infinitesimal generators

t20

of (Co,l)-semigroups {St(s) :s 20} on ¢ is called stable if

£20

:n 20} on ¢

there exists a sequence of T-compatible norms {Ef-in

such that for each T >0 there exists qq >0 and for g 2d, there are
constants Mq =Mq(T) 21 and cq =oq(T) satisfying the following con-
dition

s
1

I ~15

k q 3
(1.10) | 1 s_ (s.)e). < Me 3 {m]lq for all ¢ <, s, 20

whenever 0 gtl stz < v stk <T, k 20. Here and in the sequel the

. k .
time ordered product Hj=lst.(sj)¢ is St (sl)St (52)...5t (sk)®.

j 1 2 k
The family {A(t)}t>0 is said to be uniformly stable if for each
q=z0 Mq and oq are independent of T and (1.10) holds for

0 Stl stz <. stk <w, In either case we call Mq and oq g -0 the

stability constants.

Remark 1.1. In the literature on evolution systems in Banach
spaces (see [16] or [17]) the product H?=18(tj) for 0 stl <. stk
is taken in descending order, i.e. B(tk)B(tk_l)...B(tl). Some

results (as for example the analogous ones for Banach spaces of
the next three propositions) remain true whatever the order in
which the product is taken. However, in the construction of
reversed evolution systems (Theorem 1.3 below) the order of this
product is important and will be taken in "increasing order" as

explained in Definition 1.3.
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In the construction of evolution systems in a Banach space X

the definition of stability of a family A(t) of infinitesimal

- generators of Co-semigroups in X is given in terms of the resolvents
R(A;A(t)). However, in a nuclear Fréchet space % (or more generally
in a locally convex space) the resolvent of an operator A(t) might
not exist even when A(t) does generate a semigroup St(s) on %. (See
[1]). Nevertheless, an equivalent condition to (1.10) can be given
in terms of the resolvents R(A;Aq(t)) of the corresponding infinites-

imal generators Aq(t) on each of the Banach spaces ¢~ql-
i

Proposition 1.2. The condition (1.10) is equivalent to the follow-

ing: (cq,m) co(Aq(t)) for 0 <t <7 and

k
-k

. Il A . < A - A ’ €

(1.11) | =lR( Aq(tj))cbllq < Mqllrbllq( o) 7O b e

3
where {tj} are as in Definition 1.3 and k 20.
The proof follows on the lines of Prcposition 4.3.1 in Tanabe [17])
for each gq 2q,-

The following two criteria are useful in testing the stability

of a family of operators {A(t)}t>0 on 9.
Proposition 1.3. Let {A(t)}t>0 be a family of infinitesimal
generators of (Co,l)-semigroups {St(s) :s 20}t>0 on ¢. Let

{iie :n20} be a sequence of T-compatible norms on % such that
b tn

. for each T >0 there exists 94 >0 and for g 2q, there is a constant

b =Uq(T) satisfying the condition

g




10

Then {A(t)} is a stable family on ¢. If moreover for each g z 0

t20

oq is independent of T then {A(t)}t>0 is uniformly stable.

Proof: Using (1.12) in HHB_ S, (s.)¢]| _ we obtain (1.10) with M_=1.
E— Jj=1 tj ] q q

Proposition 1.4. Let {A(t)} be a family of infinitesimal generat-

tz0

ors of (Co,l)-semigroups {St(s) :s 20} on % stable with respect

t£20
L D >0}. Let {B(t!}

to the sequence of norms {

£20 be a family of

continuous linear operators on ¢. Assume there exists qé 20 such

that for gq qu and T >0 {B(t)!} can be extended to a family of

0<tsT

uniformly bounded operators from ¢lq! to ¢[q[' Then {A(t) +B(t)},

is a stable family of infinitesimal generators of (Co,l)—semigroups

Proof: Let g 2q6 and also denote by B(t) the extension of B(t) from
d to & . Let
lq] lq]

K (T) = sup |B(

t)]] .

From Proposition 1.1 for each t2 0 A(t) +B(t) is the infinitesimal
generator of a (Co,l)—semigroup {Pt(s) 1852 O}tZO on ¢. For each
T>0 let qq,Mq q2q, be the stability constants of the family
{A(t)}tzo' We notice that Proposition 4.3.3 in [17] (see also Theorem 5.2.3
in [16]) remains true if the product of the corresponding operators 1is taken

in increasing order. Then using this proposition we have that for

each g zmax(qo,qb)

k

q)jzlsj;
= cd, s. 20
J¢Hq P 3

M
(oq+Kq(T)

0 Sty fTE, ...t <T, k 21. Hence the family {A(t) +B(t)}t*0 is

__________
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stable with stability constants Mq, oq +Kq(T)Mq q zmax(qo,qo).

The main result of this section is the following theorem which
gives sufficient conditions for the existence of reversed evolution
systems on ¢. Its proof is on the lines of the construction of evo-
lution systems on Banach spaces following an idea due to T. Kato

(see [16] and [17]).

Theorem 1.3. Let {A(t)} be a family of continuous linear operat-

t=0

ors on ¢ such that for each t 20 A(t) is the infinitesimal generator

of a (Co,l)—semigroup on $. Let {| SRR 20} be a sequence of T-

compatible norms on ¢ such that the following two conditions hold:

(a) {A(t)}t>0 is a stable family with respect to {

:n 20}.
n
(b) For each g 20 there exists p 2q such that for each t -0 A(t)
has a continuous linear extension from @,pr to Qr . (also de-

| |

noted by A(t)) and t ~A(t) is L (¢ @iq[)—continuous.

ip|”
Then there exists a unique reversed evolution system
{T(s,t) :0 <s <t <»} on & such that for each T >0 the

following three conditions are satisfied:

(1) For some q, >0 and all q :=q,

g (t~s)
HT<s,t)¢Hq < Me 9 uouq for all 5 - %, 0-s t- T,

where Mq =Mq(T) and oq =Oq(T) are the stability constants;

d

T(s,t)A(t)$y for all » -9, 0 -5 -t T ;

d

It

-A(s)T(s,t)9 for all ¢ - d, 0 ~s «t = T;




If moreover {A(t)}t\o is a uniformly stable family then conditions

(1)-(3) hold for 0 <s <t <=,

Proof: ©Let T -0 be fixed but otherwise arbitrary and let q :20.

Then by condition (b) there exists p g such that

(1.13) 1TA(t) -A( hL s ) st 0 uniformly in t = [0,T].
‘Pl q.
Let ti =gT k=0,1,..., n and define the following step function

approximation of A(t):

Then by (1.13) for each q 20 there exists p g such that

(1.14) (t) ]!

IAle) = A

PP
IS .4 )

uniformly in t < [0,7].

For each t =z 0 let {St(s) :s :0} be the (C

C,l)-semigroup on ®

generated by A(t). For n »1 define the two paramcte. family of

operators

n n
S n(t -s) tj-s ‘t'tj+l
t.
]
i n k:l T n
s (1 s) S n(H)S n(t -tk) for k > ¢
I t L+l t. t
‘ { j k n',t< n
: % F %
n__ ..n
tf <s :té+l
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Using the semigroup property of {St(s) 15 20} it is easy to

verify the reversed evolution property of Tn(s,t) i.e.

(728
—
-3

Tn(s,t) = Tn(s,r)Tn(r,t) 0 ss<r st n(t,t:) =1,

and using the continuity of the map s +St(s)¢ for each 3 <% and

t 20 it follows that for each 9 ¢

(1.15) (s,t) *Tn(s,t)¢ is continuous in ¢, 0 <s <t < T.

Thus for each n 21 {Tn(s,t) :0 ss st <T} is a reversed evolution
system on ¢. Moreover, from the definition of Tn(s,t) and the
fact that A(t) is the infinitesimal generator of {St(s) 15 20} we

obtain the following

da = n 1 = <G < < s
(1.16) 3T (s,t)9 = Tn(s,t)An(t)a t;ftj j=1,...,n, O<csc<ts<T, ¢
and
(1.17) i'I‘ (s,t)d = -A_(s)T _(s,t)¢ s #tn j=1 n, 0<s<ts<T
: ds n ' n n' >’ 3 reerr S Ve sty

Next for each ¢ «¢% the map r *Tn(s,r)Tm(r,t)p is differentiable
except for a finite number of values of r and
d -
E;(Tn(s,r)Tm(r,t)®) = Tn(s,r)(An(r) Am(r))Tm(r,t)¢.

Then

Tn(s,t)a —Tm(s,t)® = [T (s,r)(An(r) —Am(r))Tm(r,t)odr 5> <3, 0:s8<t

n

0 —rtr

and for each g =0 and ¢ <9

t
f - P (1 - N . .
(1.18) [T (s,t)% Tm(s,t),,{q 2 fmn (s,1) (A (r) A_(X)T (r,t); ‘qdr 0-s-

S
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Now using the definition of Tn(s,t) and the stability condition -
(1.10) we have that for each g 29, (where 9, is given by the stability «
-‘

condition) and 0 <s sr <t <7 )
| oq(r—s) e

! - - i ~

(1.19) 1[Tn(s,r)(Ah(r) Am(r))Tm(r,t)tpHq < qu H(Ah(r) Am(r))Tm(r,t)DHq. 3
LY

Using condition (b) we have that for each gq 2q, there exists p :qg :i
9.

such that for 0 <s <r <7 and ¢ ¢® o
Y
- - i

I A ey =A @NT )l < 1A @ -A O, o I Tl t)ol 5
lpl""lal oy

-“_-

and using again the definition of Tm(r,t) and the stability condition i?
Ted

(1.10) we have that for ¢ ¢ed and 0 <r <t <T A
0, (£-1) =

(1.20 T (r,t < M . .
Yot (ratdell g < Moe Foll :
Then taking M==max(Mp,Mq) and ¢ =max(op,cq) using the last three -
inequalities in (1.18) we obtain that for 0 <ss <t <T and ¢ ¢ & 3:
S

) ¥ 23

g(t-s -
(1.21) T (5,000 - T (s, )] = M2 e loll, fla ) -2 (0l , ar b

s pl"[ql .

P
NN
which, using (1.10), goes to zero as n,m goes to infinite. ﬁ%
Herce for each ¢ ¢¢, q2q, and 0 <s <t <T {r (s,£)e}_, <P is ij.
a Cauchy sequence in ¢|ql and therefore a Cauchy sequence in ¢. ;?
Thus for each ¢ ¢d and 0 <s <t <T define the reversed evolution :gﬁ
system 'i-
(1.22) T(s,t)$ = lim T _(s,t)¢ (limit in 9). SR

Then by definition we have that T(s,t)¢ ¢ and using (1.20) we
have (1) in the Theorem which also shows that T(s,t) « L(%,%).

Properties (1.3) and (l1.4) follow since Tn(s,t) satisfies them.

E-'I:'I:'-“::J‘:\'4‘:'-‘__'!:}:'}1-';:-‘.'f.'-'_'-‘.:-"_:-r" A T A A e T A e e g e
N D S AN N A N N I O N N N S N N AN
B T S o i C LN T L TN



Before proving (2)-(3) in the theorem we make the following
observation: The system {T(s,t)} = {TT(s,t)} in (1.22) is defined
for 0 <s <t <T and would appear to depend on the interval [0,T].
We now show that under the stability condition on the family

T

(1.23) T (s,t)6 =T' (s,t)¢ for all ¢ <9,

Let T' >T >0 and define & =5T' k =0,1,...

~

n —
k+1 k=0,1,...

Using (1.13), for each q 20 there exists p 2gq such that

(1.24) A (8) =A (Ol (o 5 ) plw O
ipl" " lal

uniformly in 0 <t <T <T7'. ©Next for each ¢ <% the map
r *Tn(s,r)Tn(r.t)¢ is continuously differentiable except for a

finite number of wvalues cf r and

d -~ _ _-. -~
a;(Tn(s,r)Tn(r,t)¢) = Tn(s,r)(An(r) An(r))Tn(r,t)®

i
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-~ t ~ -~
Th(s,t)¢-—Tn(S,t)¢ = iTh(s,r)(Ah(r) -Ah(r))Tn(r,t)¢ dr for all p -9,
0<s<tsT_T'.

Then using (b) and the stability condition, for each g 20 there

exists p >g such that

t
-~ ' t_ ~
|}Tn(s,t)¢-'1‘n(s,t)¢||q < M (MM (T ye (E7S) oHp ill A () =A_(c)] ((b’pi'@'Qi)dr
j i

where ¢ =max(oq(T),op(T')) and Mq(T), Mp(T'),oq(T) and UP(T') are
the stability constants. Then using (1.24) and (1.22) we obtain
(1.23).

Now we return to the proof of the theorem. To prove (2) let
g 20 and ¢ ¢¢, then since for each t z0 A(t) is the infinitesimal
generator of {St(s) :s 20}, the function r *Ss(r -s)Tn(r,t)¢ is
differentiable except for a finite number of values of r and we

have that

It (t,8)0 -5 (t-s)0 Ilq= I

0w —cr

d
a;{ss(r-s)Tn(r,t)¢}dqu

t
[ £ S (r=s) (A(s) =A (r))T (r,t)eer |

1A

t
-3)
MZeO(t s ”‘PHP f HAn(r) _A(S)H L(d , 0 ')dr
s el lal
for all ¢ <%, 0 <s <t <T where M,0 and p are as in (1.21). Then using

(1.14) and (1.22) we obtain that for 0 <s <t <71 and p 3

t
(1.25) lT(s,t)6 -S_(t -s)e] _ < MZeO‘t'S)H(»{b [1a(r) -A(s)! . .dr.
S q S (Qkp“'blq‘)
j ] \ i

Hence by dividing both sides of (1.25) by t -s and letting t ~+s

we have that for each g 20 and ¢ = ¢

1 .
muT(s,t)@—Ss(t—s)ol[q 0 as t +s.
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o
a* d ~
Then EET(S't)¢ exists in ¢ and since EESS(t -s)¢==A(s)SS(t -S): we ;:
A
have that N
a* ’
1.26 —T(s,t = A(s) (limit in ¢) for all 4 ¢ %. )
( ) ac ( )¢!t=s ) ) z
"
'ul‘
- In a similar way one shows that for each ¢ ¢ 9 Bt
d_ - ~3
(1.27)  ggT(s,8)e|__, = -A(t)o. 2
Next using (1.26) we have that for ¢ <% and s <t oY
at 1 p
(1.28)  ggT(s,t)¢ = lim ={T(s,t +h)s -T(s,t)e} ~
h+0 ~
-
= T(s,t)lim F{T(t,t +h)o -0} = T(s,t)A(t)s. :
+0
h X
~
Now for s <t, using (1) in the Theorem, (1.4) and (l1.27) we have N
o
that for each g 2 g, and ¢ = ¢ -
limsup||T(s,t +h){£:LE%ELEL2} - T(s,t)A(t) o] -
h+0 g ”
\J‘
e
= limsup|T(s,t +h) {EZTEMEIOY _ pig ¢ v h)T(t +h,t) A(e):, ~
h o] ’
h+0 A
.
o_(t+h-s) 3
< limsup M e & ;;&L"—;M -~ T(t +h,t)at) + | = <
1

h+0 ; :
Then for s <t and ¢ ¢ ¢ i;
a” 1 _ . A

geT(s/t)o = lim ={T(s,t +h)s -T(s,t)3} = T(s,t)A(t)?

. h+0

which together with (1.28) imply (2) in the Theorem. In a similar

way (3) 1is precved.
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4
To prove uniqueness of the system {T(s,t) :0 <s <t <T}, suppose :;
N
’I
that V(s,t) is a reversed evolution system with generators {A(t)}t’o -
oy
satisfying (1) and the same forward and backward equations (2) and j;,
-"
(3). Then except for a finite number of values of r the map C’
.
'
r‘+V(s,r)Tn(r,t)® is continuously differentiable for each % ¢ % and -
we obtain
t
V(s,t)o -Tn(s,tm = [V(s,r) (An(r) —A(r))Tn(r,t)q>dr for all ¢ <%, O<ss <t <T.
s R
Using (1.20) for Tn(s,t) and (1) in the theorem for V(s,t) we ob- hj
NS
tain that for each g 20 there exists p >g such that g:’
).
o (t-3) t 2
Ivis,t)o =T (s,t)0 o < M (DM (Me tollg Jlam -a @l 4 dr o
s et al P
Then by (1.14) and (1.22) we have A
i
Vis,t)d = T(s,t)d for all ¢ «d, 0 <ss <t <7, T>0. D
Definition 1l.4. A reversed evolution system {T(s,t) :0 <s <t <=} 5&
on ¢ satisfying (1)-(3) in Theorem 1.3 is called a (C,,1)-reversed ;;i
evolution systen. ;‘
The following is a perturbation result for (Co,l)—reversed g
evolution systems on 9. f
Theorem 1.4. Let {A(t)}t>0 be a family of continuous linear %?.
- i\
operators on ¢ satisfying the conditions of Theorem 1.3. Let RN
{B(t)}t>0 be a family of continuous linear operators on ¢ such that td
there exists qo >0 and for g zqo and t >0 B(t) has a continuous ;QL
linear extension to ?,q, and the map t ~B(t) is L(Q‘q[,¢‘q,)-c0n— iﬁ
tinuous. Then there exists a unique (Co,l)-reversed evolution ﬂ?j
system V(s,t) on % satisfying (1)-(3) 1in Theorem 1.3 for the stable ﬁ;:
family {A(t) +B(t)}t>0 of infinitesimal generators of (C_.,1)-semi- o

0
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\:
: groups. Moreover V(s,t) satisfies the integral equation
N
t
ﬂ_ (1.29) V(s,t)d = T(s,t)o + [T(s,r)B(r)V(r,t)sdr for all 3¢o, O0<s -t
) s
2
? where T(s,t) 1is the (Co,l)—reversed evolution system generated by
3 the family {A(t)} __,.
f; Proof: Under the conditions on {B(t)}t>0 and using Proposition 1.4,
' the family {A(t) +B(t)}t>O satisfies the conditions of Theorem 1.3
" which proves the existence of the reversed evolution system V(s,t)
L4
- satisfying properties (1)-(3) in Theorem 1.3 for the family
<
L4
A {a(t) +B(t)}t20'
by To show that V satisfies (1.29), for each T >0 and ¢ ¢ ¢ define
Ly
2 for 0 <s <t <T
B
L
L
- VO(S,t)¢ = T(Slt)®
‘( t
P, -
3 (1.300  vi™(0,t)0 = (s, 1B )V ™ P (r,e)5ar  m:1
.~ s
_ - _ v () .
g Vis,t)o = } V (s,t)® (convergence in ¢).
v m=0
f Applying (1) in Theorem 1.3 to T(s,t) and using the continuity of
“
the map t »-B(t) in L (¢ , )y for 2 , we have that for >g.,
; ° (®) in L{81q) % q 19 * 7%
%; 0 “s<t<T and m 21
v ™ (s, eyl oM ecq(t_S)m RTINSO PP
‘ i S, y\q ~ q q ‘q R m! ¢
*
L7 where
o\
, Kq(T) = sup [[B(t)!
q A P ‘,A{ .
4 0-t=T AT
-
L
Y

Dol R
EEN

DT R I ) « ¢ _ &  w . ® g .- B - . . B .- - -« a ER P < W7 - . e e A T A T T R .
- . - .. . . B e s - . . B . - . . N PO . . . N . N LA N N . PR
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Then for each ¢ = ¢ the series (1.30) converges on ¢ uniformly in
0<s <t <T and therefore V satisfies (1.29). Moreover for q 49,

g +K _(T)M -
( q g ) q)(t s)

Vis,t)all < M
” ( )@nq q

HMIC} for all 2 <9, 0<s <t =7

which shows (1) for Q in Theorem 1.3.

It is not difficult to prove that v also satisfies (2) and (3)

in Theorem 1.3 which shows that V =V. _

As a consequence of Theorem 1.4 we now obtain the reversed
evolution system generated by a family of operators of the form
{a +B(t)}t>0. Following the terminology for Banach spaces used by

Curtain and Pritchard [3] we call these operators "quasi-generators".

Corollary 1l.1. Let A be a continuous linear operator cn ¢ which is

the infinitesimal generator of a (Co,l) semigroup {S(s) :s =20} on #%.
Let {B(t)}t>0 be a family of continuous linear operators on ¢ such

that there exists a sequence of t-compatible norms {! :n 20} on

n
$ and 94 20 such that for q 29, and t 20 B(t) has a continuous

linear extension to ¢|q[ and the map t -B(t) 1is L(Q'ql'®lq$) con-
)
tinuous. Then the family {A +B(t)}t>O is stable and there exists

a unique (C.,l)-reversed evolution system T(s,t) on ¢ satisfying (1)-

Ol
(3) in Theorem 1.3 for the family {A +B(t)}t>0' Moreover T(s,t)
satisfies the integral equation
t
(1.31) T(s,t)d = S(t -s)d + [S(r-s)B(r)T(r,t)»dr for all ».3, 0-s-t. ]
s

The following result will be used in proving uniqueness of the solu-

tion for the stochastic evolution equation in the next section.
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Proposition 1.5. Let {A(t)} be a family of linear operators as

t20
in Theorem 1.3. Then for any XO £ ?' the ?'-valued initial value problen
t
—_— )
X, = X0+fASXSds
0
i.e.,
t
X, [o] =X, (0] +£XS[AS®]ds for all ¢ <%

has a unique ¢'-valued solution given by § =T'(t,0)XO where

t
{T(s,t) :0 <s <t <o} is the (Co,l)-reversed evolution system on ?

generated by the family {A(t)}t>0'

The proof of the above proposition follows easily from the

following lemma.

Lemma 1l.1. Let {A(t)} be a family of continuous linear operators

£>0
on ¢ satisfying the conditions of Theorem 1.3 and let
{T(s,t) :0 <s <t <=} be the (COJJ-reversed evolution system generated

by it. Let B be any continuous linear operator from ¢ to 3. Then

for each F ¢9%' and 0 s ust the following identities hold:

t
F(B¢] + [F[BT(u,s)A(s)dlds for all 3 o
u

(a) F[BT(u,t)?]

t
F[B¢] + [FIBA(s)T(s,t)d»]ds for all ) < 6.
u

(b) F([BT(u,t)o]

Proof: Use the forward and backward equations given by (2) and (3)

in Theorem 1.3.
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2. STOCHASTIC EVOLUTION EQUATIONS

Let (Q2,F,P) be a complete probability space with a right con-

tinuous filtration (Ft)t>0’ FO containing all the P-null sets of

F. Let (Q,{-{n n 20) be a countably Hilbertian nuclear space and

@n,¢g n 20 and ¢' be as in Section 1. Let M =(Mt) be a ¢'-valued

tz0

martingale with respect to F i.e. for each ¢ <9 (M

£’ o1 P, 18

a real valued martingale. This section concerns the solution of

the ¢'-valued stochastic evolution equation

< - ' :
(2.1) dst A (t)gtdt + th t >0

where vy is a ¢'-valued random variable, {A(t)}tzo is a family of
continuous linear operators on ¢ generating a (Co,l)-reversed evo-
lution system {T(s,t) :0 s <t <=} on ¢ and {A'(t)}tzO are defined
by the relation (1.2). We also consider perturbations of (2.1)

i.e.
. o = t £ + ' 14
(2.2) d.,t A (t)htdt B (t)ﬂtdt + th
where {B(t)}t*o is a family of continuous linear operators on ?.

Our results also include the case when A(t) =A t 20 and A is the
infinitesimal generator of a (Co,l)-semigroup on ¢ (Corollary 2.2).

To begin with the study of stochastic evolution equations driven
by »'-valued martingales we first recall from Mitoma [12] some
properties of such %'-valued processes. We will denote by D(T;¥")
(respectively C{T; ¥')) the space of right continuous processes with left
hand limits (respectively, continuous processes) indexed by T([0,T]

or [(0,+)) and with values in ¥' (+' or +').
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Proposition 2.1. (a) If M =M.,

exists a ¢'-valued version, also denoted by M, such that the follow-

is a ¢'-valued martingale there

ing two conditions hold:

(1) For each T >0 there exists my >0 and NJ eD([O,T];bé ) a.s.

T T
where M, =(Mt :0 <t <T).

(ii) MeD([0,»);0') a.s.
(b) If moreover E(Mt[¢>])2 <o for all 9 <%, £t =20 then for each

T >0 there exists a7 >0 such that MT sD([O,T];@é ) a.s. and

T

E( sup [Mt!f
0stsT dr

)<oo_

In view of the above proposition, from now on we shall always
consider ¢'-valued martingales in D([0,=);d').

We now give the meaning of the solution of the stochastic evo-
lution eguation (2.1). A similar definition is given for the solu-

tion of the perturbed equation (2.2).

Definition 2.1. We say that the stochastic evolution equation (2.1)

has a %'-vzlue socluticn £ =(£t)tZo if § satisfies the following
conditions:

(a) Et is $'-valued, progressively measurable and Ft—adapted.
(b) . (»] = vle) + jog [A(s)®las + M, (o] for all 9:0, t >0 a.s.

In Theorem 2.1 below we will prove that the unique solution of

(2.1) is given by the so called "evolution or mild solution"

M
J

t
= T'(t,0)y + [T'(t,s)aM
0 S

where {T'(t,s) :0 <s <t <=} is the evolution system on %' adjoint

to the (Co,l)—reversed evolution system {T(s,t) :0 <s <t <>} on b,
. . 2 .
and M is a ¢'-valued martingale such that E(Mt[:]) <w» for all : &,
{ ‘ N ‘. ’;- ..-":.): L :‘J‘:. :-":v-‘.- . P N o ‘.' . : '-". N - . ) 'F:. .:. p "'—“'h“" ..:’-" "." ORI --.‘:::--
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t 20. The abave $'-valued integral is defined for each T >0 and

0 <t <T as the sum of the Lz—convergent series

t

t
(2.3) (JT' (t,s)aM ) (3] = [AM_[T(s,t)s] =
0 S o S

W r~1y
e
A\
3
2]
~
ct
L
«*
v
>
>
t
>

j

where pT >qT is such that the injection % == ? 1s nuclear, 9. is

as in Proposition 2.1 (b) and {ﬁj}j>l =% is a CONS in *o_+ The evolu-
T

tion solution has the important property of being a :'-valued semi-

martingale, i.e. for each » - %, 5t[@] 1s a real valued semumartingale.

We now present the main result of this section concerning the

solution of the stochastic evolution equation 12.1).

Theorem 2.1. Assume the following conditions:

(Al) vy is a ¢'-valued Fo—measurable random ele” «nt such that for

some r, >0 E{v!z <™,

0 “ry
(A2) M = (Mt)t>0 is a %'~valued martingale such that MO =0 and
for each t =0 and » - ¥, E(Mt[:])2 T or.

(A3) {A(t)}t>0 is a family of continuocus linear operators on :
satisfying the following two conditions:

(a) {(A({t)} is stable on 9.

t=0

(b) For each n 20 there exists m >n such that for each t :0
A(t) has a continuous linear extension from im to bn and
the map t +A(t) is L(¢m,¢n) continuous.

Then the stochastic evolution equation (2.1) has a unique $'-valued

solution 3 = (%) 0 given by the evolution solution

t t=
t
(2.4) By = T'(t,0)y + [T '"(t,s)dM
0 S

~
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where {T(s,t) :0 <s <t <®} is the unique (Co,l)—reversed evolution

system generated by {A(t)}t20 and given by Theorem 1.3. Moreover

has the following properties:

E

(1) £, =D([0,»):%"') a.s. and for each T>0 there exists Pr >0

such that g?‘sD([O,T] :¢é ) a.s. and
E( sup |, |2 T
Osts T Pr

) < =,

(2) £ given by (2.4) satisfies
t
Sp =ML+ {T'(E, 00y + éT'(t,s)A'(s)Msds}
i.e.,
t
Eelol = M (o] + (v[T(0,t)0] + [M_[A(S)T(s,t)olds} for all »e<o.
0

Proof: By condition A3 and Theorem 1.3, the family {A(t)}t>0

generates a unique (Co,l)—reversed evolution system {T(s,t): 0<ss<t <=

on b.

For T >0 let dr given by Proposition 2.1/k) (we take ar zro) and
define

T _ , T . ) |

2, = {wel +tM €D([0,T];0 Y bo{w €3u:‘Y(uu), <o},

1 . q “T,
T
= - !

(2.5) CT(xu) = sup lMt(w) [_qT.

0<t=T

Then by Al and Proposition 2.1 (b) P(QI) =1 and CT(w) <= for
T , . ,
w 591. Moreover, using (1) in Theorem 1.3 and A3 (b) there exists

rr >qr such that

s T
ar . ,
(2.6) |A(s)T(s,t) o] <M e K_ 't for all $<3%, O<s-t- T
ar 9y ar Ty
where
----- A e e T T T AT U N e e e
« Pt T e, R T e T S e L T e T e e N
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K= sup [A(t)] <o,
qT O0<t<T L(QrT’¢qT)

It is important to observe that if 97 =9 independent of T,
then rs =r also is independent of T and (2.6) holds, although the
constants M_ , ¢ , and K might still depend on T.

T 97 d7

The proof of the theorem is completed in several steps.

Step 1 We first show that for each t >0 the map

t
o > [M_[A(s)T(s,t)olds
0
is continuous and linear on ¢ a.s.: Let T >0 be fixed but other-

wise arbitrary and w eQI. Using (2.5) and (2.6) we have that for

0 <t< T
t
(2.7) | [M_(w) [A(s)T(s,t)elds| < C(w)TN{(T)[o] for all p « ¢
0 s T rT
Gq TT .
where N_ (T) = M _ e K . Then for w =0, and 0 st =T
1 a7 q; 1
: t
(2.8) Y, (w) (o] := [M_(w)[A(s)T(s,t)plds ¢ <o
0

defines a continuous linear functional on ¢, i.e. Yt(w) e d',

Moreover from (2.7) we have that for w eQI

(2.9) sup [Yt(w)[¢1l2 < C$<w)T2Ni(T)f¢(i for all 3 « 9.
0<t<T T

Since T >0 is arbitrary then for each t 20 Yt e %' a.s.

Step 2 For each T>0 there exists py >r; such that

Y, i= (Y, :0 <t <T) «Cc([0,T) :¢pT) a.s.
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Let T >0, w sQT (we will sometimes suppress « in the writing) and

1
to,t < {0,T]. Using Lemma l.l(a) it is not difficult to show that
(assuming t0 <t)
 t t
Yt[¢] - Y (5] = f f Mu[A u)T(u,s)A(s)d]dsdu + f M A(u)T(u,t)3]du for all : - :.
0 0 tO to

Next using (2.7) and condition A3 (b), there exists ET >r. such that

for some constant NZ(T)

(2.10) [Yt(w) (0] =Y Y2 s Col@NJ(T)Te~t !y, for all & <%

to T 0 (T
Then Yt(w)[¢] is continuous in 0 <t < T for all 3 <9, w eAI.
Let Py >rT be such that the injection @p:;a @r is a Hilbert-
T
Schmidt operator and let {Qj}j\lc¢ be a CONS for ¢p . Then from
= T
(2.9) for w EQI
(2.11) z sup (Yt(w)[«b.])z s C%(w)TzNi(T) Z i :i < >
j=1 Ost<T J =1 3 7
Then using the continuity of Yt(w)[¢], (2.11) and the dominated
convergence theorem we have that for w eﬁ& and t,tO < [0,T7]
]
lim lYt(w) —Yt (w)‘f = lim E (Yt(w)['iﬁ-] -Yt (w)['ﬁ~])2 = 0.
£t 0 PT  tet, §=1 J 0 J
0 0 )
1
Then we have shown that for each T >0 there exists pT >rT such
that Y. (w) 2C(10,T):0) ) for w o], p@al) =1, '

T

Step 3 We shall prove that there exists a %'-valued process it

satisfying (b) in Definition 2.1.

Let T t+= and 0
n l n

]

4

r

) =1, and from Step 2 we |
have that 1
L]

q

!

L]

{

{

i
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Y (w) € C([0O,=) :9") uuc'Ql.
Let QZ ={w Q2 :M (w) «¢D([0,=) :@')}n{weiiﬂw(uﬂ_r < =}. Then by
0
(Al), (A2) and Proposition 2.la(ii) P(Qz) =1. Let 0O* =anQ2,
then P(Q*) =1 and for w < O*
(2.12) gt(‘“) = T'(t,0)y(w) + Yt(w) + Mt(w)
is a well defined element on ¢' for each t >20. Since
Y «<C([0,») :¢') a.s. and M_ «D([0,=) :3') a.s. then
5. ¢D([0,») : ') a.s. and
t
(2.13) St[®] = v[T(0,t) 9] + st[A(S)T(s,t)¢]ds + Mt[¢] for all ¢ ¢d, £ 20
0

Next let w eQ*, £t >0 and ¢ ¢ ¢
Applying Lemma l.1(a) to B=I, F=v and u =0 we have

t
(2.14)  yI[T(0,t)9] = v{¢] + [YI[T(0,5)A(s)¢]ds
0

and taking F =Mu’ B=I in Lemma 1.1 (a) we obtain
t

(2.15) M (AT (U, t)e] = M [A(woe] + jMu[A(u)T(u,s)A(s)e]ds.
u

Using (2.14) and (2.15) in (2.13) and applying Fubini's theorem

we obtain

..............

a.s.

(we will suppress w in the writing).

t

t t s
el = vlol + [Y[T(0,t)A(s)p]ds + f{MS[A(s)Q] + [M [A()T(u,s)A(s)2]durds + M _[:]
0 0 o"
t
= v[p] + éasuusths-+w%[oL

Then the process Et given by (2.12) satisfies (b) in Definition 2

“~

Observe that the map (t,w) *Zt(w) is B(:')/B(IR)® F-measurable

and for each t, it is F?'Y—measurable where

1.

., A
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M,y
Fe Y= c{y(8l M (2] :0ssst, 33},

Moreover, (2.12), Proposition 2.1(b) and Step 3 give that for each

T >0 there exists Py >0 such that

ET «D([0,T};:d" ) a.s.
L] pT

Step 4 It remains to show that g defined by (2.12) and satisfying equation (b)

of Definition (2.1), is given by the expression (2.4) so that the latter is the re-
cquired solution. Unicqueness follows easily from Proposition 1.5. For each T>0 let
Pt >qy be such that the injection @p cp P is a nuclear operator.

T a7
By (A2), (2.5) and Proposition 2.1 (b)

(2.16)  E( sup_(_(s])%) = s(cT)z!aié < = for all 4 = 4.
OstsT T

First observe that the series
=t

(2.17) jil é<T(s,t)b,®j\pTdMs[:j]

converges in LZ(Q) for + . $. For, using (2.16), conclusion (l) of
Theorem 1.3 and the nuclear property, we have that for 0 t - T
and ¢ - 9,

0 x

ot t
; S lEl“T(s,t)d,5.> aAM [+.1/-T(s,t) s, ~_ dM
B Vg @Ml

j=1 k=1' 0 T ]
" } 2 t 2 .
» {Ef<T(s,t) ¢, . 2 dM[:.] *Ei - T(s,t):,s - dM[> 1 _+°
M ’ ’ + B, k
i=1 k=1 0 1 Pp 175 ) k - s
27 T
2 0,2 p , P
Mo 2% e {(E<M[+.] E-M[:,] "
Pr " 'Pp T k' T
2.7 !
= “2 ;:~2 e P {EMT[n]Z-EMTl:klZ‘2
Pr  Prp
2 2 2pr 2 2 2
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Next using the backward equation (1.6) and Ito's formula, for each

® ¢? and j 21 we have

t t
(2.18) <T(s,t)%,%.> dM =M l<s,0,>, 000 - M ——<T (s,t):,:.>_ ds
: 120057 (853 = M (20 20 = M (o) JEAS
t
=M [<* $.) + /M [<A(s)T(s,t)s,5.> . . ids
ME or ;) é SIASITIS )2 5,y =]
But
2 2 2 2 2
(2.19)  EM_ (3] = 7 M_[<p,0, )7 = E(CT) b =, <d,0.0 . C
t j21 ¢ 3 pT 3 T 521 ] Pyl oEs
n
< E(C$)§$ IR TR T
j=1 I Fpoo e
Then from (2.17), (2.18) and (2.19) the series
» t
L [M_[<A(S)T(s,t)s,6.>_ 3.lds
j=1 0 ° 37pr’3
converges also in LZ(Q) and therefore, for each 5 < %
© t t
(2.20) E [<T(s, AL dMS[q)j] =M [o] + M_[A(s)T(s,t)¢]ds a.s.
j=1 0 T 0
The assertion now follows from (2.13), (2.20) and (2.3). _
Remark 2.1.
a).-From (2.10) we have that for w €QI Yt(w)[®] is a continu-
ous real valued process of finite variation. It is not difficult
to prove that y[T(0,t)¢] is also a continuous process of finite
variation on each finite interval. Then since they are Ft-adapted
they are predictable and from (2.5) St[q] is a real valued special
semi-martingale with decomposition
. (8] = M_ (3] + v (9]
where Vt[al = y[T(0,t)$]) + Yt[al-
T e N T L e T T D L D A et NN T
J. ’ ;\'-\ s.:."\- .:':-. .‘. .\.-{': :":- -"~: s-.:- :"-;. -;"'\.. ":-:"':"-:' -------- . ‘:-\ .x: :. ESC ':\":'.\'\' . \-\.‘.
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N b).-If the $'-valued martingale M is continuous then (i) 1n
Theorem 2.1 holds if we replace the spaces D((0,:);+') and

N D([O,T);:" ) by D([0,v): ') and C([O,T]: *' ) respectively.

o We now obtain some easy but important consequences of the

. above Theorem.

% Theorem 2.2. Assume (Al)-(A3) of Theorem 2.1 and that there
N exists q >0 such that M -D{([0,») :¢é) a.s. {(or C([0,=) :ﬁé) a.s.).
N

Then there exists p >gq such that the solution ¢ =(5t)t30 of (2.1)
: satisfies the property 7, -D([0,=) :Qé) a.s. (C({0,») :?é) a.s
™ respectively) and if {p,}, ; ¢ ! is a CONS in i  then
9 2
* - t

. 0ol = y(T(O,)0] + ; [<T(s,t)d,5.> dM [5.] -4, t -0 a.s.

~ t j=1 0 ] P s 3
N
b
N Proof: It was already noticed at the beginning of the proof of
)
- Theorem 2.1 that if gr does not depend on T neither It NOr pr do.
.: Then the theorem holds taking p >r =g such that the injection
o ¢p<L’¢q is a nuclear operator and given q, r is determined by condition
w

A3 (b). -
}j Remark 2.2. The condition on M of Theorem 2.2 can be obtained if there
Q exists £ such that for each t >0 there is a 9t >0 and

2 2 : .

- E(Mt[o]) :Gt‘o , for all ¢ = ¢, for example if E(M [:])2 = t2(:,)
3 t
{ wiere yl+,+) i1s a positive defin:te continuous bilinear form on
d
o
3 Corollary 2.1. Assume 19 is a $'-valued Gaussian element independent
j of the %'-valued Gaussian martingale with independent increments
‘2
3 M, (M, =0) and the family (A(t)} , , satisfies condition (A3) of
-a - .
] Theorem 2.1. Then the solution £ =(it) of (2.1) given by Theoren
\ i
“ 2.1 is a %'-valued Gaussian vrHcess. :
- ]
- 1
.
L4
'J .........................

----- j
. B P -
» LA A . PP BT . o - . . R I P PR



Proof: We only notice that for each ¢ < ¢, from (2.13) we have that

(Etlbl)t>0 is a real valued Gaussian process.

Corollary 2.2. Assume (Al)-(A2) in Theorem 2.1 and let A be a

continuous linear operator on ¢ which is the infinitesimal generator
of a (Co,l)-semigroup {S(s) :s 20} on ¢. Then the %'-valued homo-

geneous stochastic evolution equation

= LN +
d&t A ”tdt th
has a unique solution ¢ =(5t)t’0 given by the evolution solution

t
(1) Sy = S'(t)y + és'(t -s)dMs

and satisfying (1) in Theorem 2.1. Moreover, { is given by

2

t
(2) Gy T ML+ {s'"(t)y + és'(t -S)A'M ds).

If in addition M «D([0,») :@é) a.s. (or C([0,=) D

q >0, then there exists p >gq such that £ =D([0,~=) ::é) a.s. (or
clo,=) :@é) a.s.) and if {’j}jzl = 3 is a CONS on ?h
» ot
(3) .21 = S{t)s] + <S(t =-s)o,d.> dM [». 5.9, t >0 a.s.
f (21 = v(s(t)s] jil(f) ( Yo o> AM (6]

The corollary follows by noticing that a (Co,l)-semigroup on % 1is
a (Co,l)-reversed evolution system. 1In the last statement p should
be taken such that p>¢ >g and ¢ ~*% is a nuclear operator, and
¢ is such that EAQIq < K!b!K for all 3 - » and some constant K.

Finally we consider the solution of the perturbed stochastic

evolution equation (2.2).
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Theorem 2.3. Assume (Al)-(A3) in Theorem 2.1 and let {J~in :n - 0"

.

be the sequence of norms on ¢ such that {A(t) is stable with

1
“t:0

respect to them. Let {B(t) be a family of continuous linear

1
t:0

operators on ¢ such that there exists d, >0 and for g =t and t =0

B(t) has a continuous linear extension to ¢. , and the map t -B(t)
is L(@,qf,¢|q|)-continuous. Then the ¢'-valued perturbed stochastic
evolution equation (2.2) has a unique %'-valued solution j =(zt)t-0

given by the evolution solution

t
S = V(e 0)y + éV'(t,s)dMS
where {V(s,t) :0 <s <t <»} is the (Co,l)—reversed evolution system

generated by the family {A(t) +B(t)}t>0 given by Theorem 1.4. In
addition to (1) in Theorem 2.1 ¢ has the following properties:

(a)

VAA

is given by

t
£.o=M_ + (V' (t£,0)y + [V'(t,s)(As) + B'(s)) M_ds}.
t t 0 s
(b) % satisfies the integral equation

Y

t
= fT'(t,s)B'(s)ngs +n, t=20 a.s.
0

t t
i.e.
t
s (8] = [£ [B(s)T(s,t)plds + n_{p] for all »-¢, t >0 a.s.
t 0 s t
where "¢ is the unique solution of the unperturbed stochastic
eguation
- '
dnt A (t)ntdt + th
g = 7
and {T(s,t) :0 -s -t <»} is the (Co,l)—reversed evolution system on

* generated by ‘A(t)}
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Proof: Under the conditions on the family {B(t)

Proposition 1.4 the family {A(t) + B(t)}
Theorem 2.1.
evolution system <V (s,t)
the first part of the theorem and (a).

evolution solution we obtain (b).

Remark 2.3.
proved for ¢'-valued martingales such that
t 20 and ¢ < d. We have been able to relax
integrability and show that the stochastic
has a unique solution. The details of the
definition 6f the corresponding stochastic

where.

t=0

Theorem 1.4 gives the existence of the (Co,l)-reversed

:0 s <t <»} on %.

The main result of this section,

34

}t:O and using

satisfies (A3) in

Then Theorem 2.1 gives

Finally using (1.29) in the
Theorem 2.1, has been
2 <» for all

E(M, [¢])
the requirement of square
evolution equation (2.1)

proof as well as the

integral will appear else-
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3. EXAMPLES

In this section we consider special cases and examples of sto-
chastic evolution equations and stable families of operators on
countably Hilbertian nuclear spaces.

The first two examples illustrate two important Zacts. First,
they are instances where the original problem 1s given on a Hilbert
space H and an appropriate countably Hilbertian nuclear space ¢ can e
constructed where the problem is solved in a suitable way; secondly,
they are examples where the family of operators 7A(%):_ . 1s s+table
with respect to the sequence of T-compatible Hilbertian ncrms con -

and A(t) is of the form A +B(t) as in Corollary l1.l1. These two

examples fall within the following framework: Let (H,<-,+.> ) be 3
real separable Hilbert space and -, a closed densely defined
self-adjoint operator on H such that <-L:,:> . >0 Zcor each : - D {L).

i

Let S(s) s 20 be the C,-contraction semigroup on H generated by -L. Furthermcre
assume that some power of the resolvent of L is a Hilbert-Scnhmidt

operator on H, i.e.

-r

(3.1) @ r, such that (AT +L) 1 {5 nilbert-Schmict.

The following construction of a countably Hilbertian nuclear szace

» 1s well known (see [6]): Ccndition (3.1) implies that there 1is
a complete orthonormal system {Dj}jzl in H and 0 skl :12 < ... such
that
(3.2) L:. = \.5..
] J 3
Define !

I
S - Y
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(3.3) ¢ = {peH (I +L)rQH§ < » for all r : IR}

i

2

= {» :H : (1 +\j) r<9,$j>§ < » for all r «t IR}.

j

-1 8

1

(3.4) <$rw>r = J

Il o~1 8

\ 2r . i . .
1(1 +Aj) <¢,®j>H<y,©j>H for all r < IR, 35,y - *.

(3.5) {@li = <9,9> r«IR, 9 0.

Let ¢r be the

r-completion of $. The following three facts are

easily verified (see ([6]):

(a) The locally convex topology on ¢ induced by

-] _is also
r

given by a countable sequence of norms

«! >0 and
n

(93

n P =0,1,2,...) is a countably Hilbertian nuclear

space.

(b) For each r ¢« IR

(3.6) }S(s)¢|r < |q>|r for all ¢ ¢¢, s 20.

Then S(s) « L(¢,%) and extends to a strongly continuous contraction

semigroup on each ¢r:

(c) % eD(-L), -L¢ c$ and

(3.7) ]—L@Ir < |q>|r+l for all ¢ «¢%, r - IR.

Hence denoting the restriction of -L to ¢ by A, we have A Lis,3).

By (3.6) and Theorem 1.l the restriction of S(s) to ., also

denoted by S(s), is a (Co,l)-semigroup on . We now prove that A is

the infinitesimal generator of S(s) on :. Observe first that
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2 ®

N

Ao = = 7 A.<d,d.> b for all ¢ <

N ® 20" b ¢>] Hbj v

J ]

N ©  =SA.

-~ S(s)p = ) e ]<¢,¢.> ol for all ¢ ¢, s =0.

P ¥ j

(o

! Using (3.4) and the last two expressions we have that for t -1,
M8

- r «¢IR and s =20

_n’

~ . 1 2 s 2r 2

- I Ad -5(s(s)o -fb)tlr = é (L+2 )77 <Ad -2 (S(s) —é),:]f)H

j=1

- = 2r 2, . 1, 75y 2
< = 2 (1+x.) <¢,®.>H(A. +§(e -1))".
ry j=1 ] J 3

'n

..‘

f’ Next, for j z1 and s 20, from the easily verified inequality

:' -Sh.

» \ 1 j 2 2 . 2

- (». +=(e -1)) < 4XT < 4(x.+1)

v J s J B

.2

— we have for ¢ «d, r - IR,
. ! 2 s 20+l 2 2

ay j=1

: 1 -si.

= Thus since xj +§(e J-1) » 0 as s -0, by the dominated conver-
-

™~ gence theorem,

-

AN

) 1 2 .

TAd —=(S(s)¢d ~)1° —= 0 for all ¢+ . %, r IR,

Y S r

N s-0
'Q' i.e., A is the infinitesimal generator of the (Co,l)—semiqroup
] {S(s): s:0} on ¢. 1In this case we say that the triple (:,1,n)
f is a srecial comratible Famil.. If in addition there exists a
5 family {B(t)}t_o of densecly defined linear operators on H such
2
-2

4

o

-
3:? ................
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that for all t=0, B(t)¢ c¢ and {B(t) satisfies the assump-

“£20

tions of Corollary l.1 with respect to the Hilbertian norms ":n’

by Corollary 1.l the family {A+B(t) is stable on ¢ and

“£20
generates a (Co,l)-reversed evolution system satisfying the

integral eaquation (1.31).

Example 3.1. (Christensen and Kallianpur (2]}, Kallianpur and Wolpert (7])

Let ¢<=>H<>$' be a rigged Hilbert space on which is defined
a continuous linear operator A :¢ +-¢ and a strongly continuous semi-
group {S(s) :s 20} on the Hilbert space H such that the following
conditions hold:

(i) S(s)dcd s =20.

(ii) The restriction S(s)!®
(iii) s »S(s)® is d-continuous for all ¢ = 9.

:$ +d is & continuous for all s :0.

(iv) The generator -L of S(s) on H coincides with A on

A semigroup {S(s) :s 20} satisfying the above conditions is called

compatible with (¢,H,%') or equivalently we say that (%,H,S(s)) is

A}

a comratible Family (see [6]).

Consider the stochastic differential equation

[ -T.'r ! 4
(3.8) d‘t L ﬁtdt + B'(t) ’tdt + th

,_’O = ‘{ .

The unperturbed equation, i.e. B{(t) =0 t 20, is a model used in
neurophysiological applications by Christensen and Kallianpur [2]

and Kallianpur and Wolpert [7]. The last named authors have solved

o~ 2008 A

aw l'l.'l{'{'{ '\A
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(3.8) for the case of a special compatible family, B(t) =0 t *0 and
when M is a ?'-valued stochastic process with independent incre-
ments defined through a Poisson random measure, namely

t
(3.9) M [#) = [ [ as(x)N(dadxds) o =&
0 IR~ X

where N (dadxds) is a compensated Poisson random measure with
variance uf(dadx)ds, for some o-finite measure y on IR<X. In [7]
it is shown that when M is as in (3.9) or a ¢'-valued Wiener pro-

cess, both Mt and the solution of (3.8) belong to the space

D(IR+. q

is independent of t. This is a special case of Corollary 2.2.

:9') a.s. (or C(IR+,bé) in the Wiener process case) where g

Example 3.3 in [13] and Example 2.3 in [6] show that we cannot ex-
pect a solution lying in C(IR+:®é) a.s. for g independent of t.

In the case of a compatible family and when Mt is a ¢'~ valued
martingale with E(Mt[o])2 <o for all ¢ ¢ ¢, t 20, the stochastic
evolution equation (3.8) with B(t) =0 t 20 has been solved in
Christensen and Kallianpur [2]. Their result is Corcllary 2.2 if
S(s) is a (Co,l)—semigroup on ¢.

It is important to observe that in neurophysiology the kind of

perturbations that occur are more likely to be nonlinear rather than linear.

Example 3.2. (Kotelenez [8])

The stochastic evolution equation of this example has been
considered by Kotelenez [8] in connection with fluctuations near
homogeneous states of chemical reactions and Gaussian approximation

to nonlinear reaction diffusion equations.

-
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~
. n | '
let ¢ = {x=(x,y..., X ) «cIR : 0<x, <1 1i=1,..., n} and .
= 1 n i y
let R(x) =Z?=Ocjxj be a polynomial in x ¢ IR where Co >0 and Cj <0
‘e
j 22. Consider the nonstochastic partial differential equation 1
A
A
SEX(t,%) = DAX(t,x) + R(X(t,x)) %
N
(3.10) X(t,x) = 0 if X4 =0 or 1 ‘
X(0,x) 20 ;
where A denotes the Laplacian operator and D >0 is a diffusion N
o
coefficient. The solution of (3.10) is the concentration of one =
.:\
reactant with reflection at the boundary (see [§]). f:
RS
Let HO =L2(C) be the real separable Hilbert space of square K
integrable functions on C with inner product 5
<P p>y = [o(x)w(x)dx -
C
Let A denote the closure of DA in HO with respect to the reflecting :f
boundary condition in (3.10). It is well known that A is a self- Ef
adjoint dissipative operator on H. Moreover if
/fcos(ﬂiwxi) 2, =21
i _ ¢
1 Zi =0 D
then ¢£ =H2=lqz is a complete orthonormal system of eigenvectors ‘f
i »
of A in HO (where ¢ =(£l,..., Zn) is a multiindex) with eigenvalues ﬂf
n o]
2 2 =
(3.12) =%, = -pn” ] 7. N
- )
;o
Furthermore Zt(l +\£)-r <= for r >n/2. Then a countably Hilbertian :,‘
nuclear space % can be constructed as in (3.3) such that for r . IR iﬁ
3
L
.r"
g T T T N e e -‘_'-.,'-'..-_.‘-,.'_-_:_'...-‘_,-. TN .'.. .'ﬂ‘.;_‘.: ‘-;..k:_v..‘._- x _.-.'.\_:.:.
¥ 1%mhhxq,;g¢v.:a_, e e “'Av“JJTAV'H”"”\“’ O S A

DA o Pa e S N..—'.“- IR A 0% m T e Tw,Te e, LI
m J\;'lrix.&t -&-lkl;lﬁl{_‘m-kw‘AﬂwM A = A Y., Xalall saliad
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2 : 2 ., 2r
(3.13)  jof_ = %<@,<p£>0(1 +hy)
and the injection ?pf>?©q is Hilbert-Schmidt for p >qg try. T, =n/2.

Thus (¢,H.,A) is a special compatible family and the restriction of

0
A to ¢ (also denoted by A) is the infinitesimal generator of a

(Co,l) semigroup {S(s) :s 20} on ¢. The space % is the nuclear

space of all infinitely differentiable functions
¢ ¢
3~ 3tn

9(x) on ¢ such that ¢(x) and —&...—
3xll AXp

zero if X is 0 or 1.

Consider the stochastic evolution equation

dg (A'+B'(t)) itdt + th

(3.14) t

Eg T Y
where Yy 1s an Fo—measurable $'-valued gaussian random element
independent of the ¢'-valued gaussian martingale M =(Mt)t*O with
covariance functional

tAs m .

n
(3.15)  E@ (+] (o)) = [ 2D ) 3, X33 + | {cj;xm)%,:»odu,
0 1=1 =0
B(t) =R'1) (X(t)) for X(t) =x(t,x) the solution of (3.10) and
R(l)(x) denotes the derivative of R{x), x ¢ IR. R(l)(X(t)) acts
as a multiplication operator on HO’ i.e.
B () = R e, Ee £ o

Theorem 3.1. Assume the initial value X(0,x) of (3.10) satisfies
the following conditions:

(i) 0 <X(0,x) = 5 where & is some positive number such that

~

R(x) - for all x *4

9 (x) for di odd, some i, are

o

L ANy

AP

h S U B R

R\ A AR




(ii) X(0,x) is an infinitely differentiable function in x,
with bounded derivatives of 31l orders which vanisn

if x. =0 or 1.
i

Then the stochastic evolution equation (3.14) has a unique $'-valued

. = (r
solution £ (’t)tzo

given by the evolution solution

which is a ¢'-valued Gaussian Lrocess

t

£, = T (t,0)y + [T'(t,s)dM
0

t S

and satisfying (1) and (2) in Theorem 2.1, where {T(s,t) : Q<s <t <=}
is the (Co,l) reversed evolution system generated by the family

{A({t) =A +R(l)(x(t))} Moreover, for each p >n/2 +1

t20°
g, EC([O,W);¢5) a.s. and

t
, -2
2 (0] = YIT(E,00) + TA 4R )T [ e D00 Mlog] 25D £20 aus.

t 0
Proof: We shall verify that the conditions of Theorem 2.2 are
satisfied. Since (@,HO,A) is a special compatible family then
A(t) =A, t 20 is a continuous linear operator on ¢ generating a
(Co,l)-semigroup {S(s) :s 20} on ». Then we only have to check
that the conditions of Corollary 1.1 are satisfied by the family
( .
‘B(t)}tzo'

Using conditions (i) and (ii) above, by Theorems Al and A3
in [8] we have that the solution X(t,x) of (3.10) is a continuous

function in t, infinitely differentiable in x with derivatives

in X continuous in t and

(3.16) 0 <X(t,x) < b x<C t =0.
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Next, it is shown in Lemma A.4 in [8] that for each q -0 the norm

{'.q defined in (3.13) is equivalent to the norm

I3 = T J6Ysoorfax s -c™(s)
9 o<!fl<q C
i - ; 4 3 d
where |Z{] =L+ +¢_ and 3 = ce . Then for each g :0
n axz §x£
1 n

there exists a constant aq such that if 9 «9 and t =20

Bwol calsweli=a 7 [0 R xE o) dax
q g q ¢

9 p<lfl< g C

and using the Leibniz formula and Schwarz ineguality we have that

for some positive constant dq

2

(3.17) isun¢|§ cd 707 Y e T Y.

)
9 0<lelg Cice i<t

Then using (3.16) and since R{x) is a polynomial in x of degree m

with constant coefficients, there exist positive constants

di(m,q) i=1,2,3 such that for any t =20

1 | - ) 2
(3.18) Bty cda ma T [ I 0 rsmfax
d 0<|&|<q C i<t
cd, m@ s dymg s, 2
e 2 'q) { = 3 ' i |q v
i.e. B(t) maps } into & and can be extended to an element in L(iq,:q) for

In a similar way to (3.17) and (3.18) it can be shown that

for t,s < [0,x)

(1) (L)

) Coy (3R (X(s,x))))dx

! PO ) '2 K s
'B(t)? B(S)D‘q - dy(mq)id]

DA et At Dt A B



Then using the continuity in t of the derivatives of X(t,x), the

fact that R' is a polynomial and the dominated convergence theorem
we have that the map t »B(t) is L(¢q,®q)-continuous for all g :0.
Then the conditions of Corollary 1.1 are satisfied and the existence
of the (Co,l)—reversed evolution system T(s,t) generated by the
family {A +B(t)}tzo is established.

Next since Y and M =(Mt)t20 satisfy (Al) and (A2) respectively
in Theorem 2.1 then the first part of the theorem follows as an ap-
Plication of Theorem 2.1.

Finally since E(Mt[¢>])2 stK]¢[l, » €, t 20 for some positive
constant K, the ¢'-valued gaussian martingale M has a version

in C([O,m):¢é) a.s. for p>n/2 +1 (see [6]). Then from Theorem 2.2

£, EC([O,w);Qé) a.s. and the last statement of the theorem follows.

The following is an example where the family of linear operators {A(t)}t>o

is not of the form A+B(t) nor a special compatible family.

Example 3.3 (Interacting diffusions).

The nuclear space valued stochastic evolution equation of this example
occurs as the fluctuation limit for interacting diffusions and it is a
perturbed equation of the type (2.2). The study of the limit of interacting
particles has been done by McKean [11], Hitsuda and Mitoma [4] and Mitoma [14]

amongst others.
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For 1 lec Y(M (o) = (v{M (o), ¥{")(t)) be an n-particle diffusion

given by the real valued stochastic differential equartion

n v
Yin)(t) =Tt % Jil fg a(Yin)(S)' an)(s))dw:
I S b(Yf{“)(s), an)(s))ds (k = 1..... n)
j=1

where (vk, wk)k>1 are independent copies of (vW) and 7 is a random variable

c.v
0 . o - .
such that E(e Y@, for some c -, arnd inderendont of che real valued brosnian

motion W= (wt)t>0' The coefficients a{x.y) and b(x,y) are bounded

C”-functions in (x.y) with derivatives in x bounded in (x.,y).

Consider the measure valued process

vy = L

n

120

0o

1)
=1 YW

where 6x is the unit mass at x. McKean [11] has shown that for each t20
U(n)(t) - It (in yrobability

where U(dx,t) is the probability distribution of Zt that satisfies the real
valued stochatic differential equation

dZt = a(Zt,t)th + B(Zt,t)dt
and

a(x,t) :

[ga(x.y)U(dy. ©)

B(x.t) := fmb(x.y)U(dy.t).
Moreover. it is also shown in [11] that U(x,t) has a density u(x.t) und that
a(x.t), B(x.t) and u(x.t) are c”~functions on RxR+.

Let

s (1) = o2 W) - uge).
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Hitsuda and Mitoma[4] have shown that the measure valued processes Sn(t)
converge weakly to the solution § = (§t)t>o of the nuclear space valued

stochastic evolution equation

(3.19) df, = A'(1)E dt + B'(1)E dt + QM
EO =Y
wvhere for » as defined below
(3.20) (A(0)) (%) = 5 a(x. )% (x) + p(x. )¢ (x) ana
(3.21) (B(£)#)(x) = g b(y.x)e! D (w)u(y. ey

+ I aly.Daxy)e P (yuly. ey for ;. 1,
Mt (MO=O) is a zero mean ¢'-valued continuous Gaussian martingale with
covariance functional
(5.220 B4 Lo M Ley]) = 16" 0 01100 ofV atx Puler,nar o) 0y ¢ 0
and vis a ¢'-valued zero mean Gaussian random element independent of M. As
pointed out in [4] the nuclear space appropriate to the problem is given by the
space ¢ of real valued functions ¢ such that ¢ ¢ ¢ if and only if y¢ ¢ ¥. (the
space of rapidly decreasing functions on R), where

v(x) = fme-lzl p(x-z)dz

and p is the usual mollifier

¢ exp(1/(1-]x|?%)) x| <1
p(x) =

o) Ix| > 1.

Observe that ¢ is a modification of ¥ with the following relations among the

norms defining their corresponding topologies:

(3.23) Hell

(3.4) Y

[wel 1 4
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where for f ¢ ¢

- 2. N~k
(3.25) [1£]] g = SUp sup (1+x7) D f(x)] n2>o
o O¢k¢n  xeR
2 n 2.2n .k 2
(3.26) |fln(f = 3 Jp (1+x7) ID™f(x) | dx n>O.

k=0

From the well known relation between the norms on ¥, we have that for all

n2l there exist constants cn and dn such that for every ¢ ¢ ¢
e Mol < lol < llell ..

Some brief comments on the relationship of our treatment of Example 5 with
that of Mitoma [14] are in order. In [14] I. Mitoma has found, in our
terminology, the (Co.l)—reversed evolution system T(s,t) on ¢ generated by the
family {A(t)}tzo given by (3.13). His main tools are several results of Kunita
(10] for stochastic flows of diffeomorphisms of R, including Ito's forward and
backward formulas. He then proves, by the method of successive approximations,
that the stochastic evolution equation (3.19) has a unique scolution. An
explicit expression for the solution is not given, nor is it written as an
evolution solution. In the theorem below we will prove the existence of the
(Co.l) reversed evolution system T(s,t) on ¢ generated by (A(t)}tzo' by using
our Theorem 1.3 and regular Ifo's stochastic differential tools. In doing this
we show that (A(‘)}tzo is a stable family of infinitesimal generators of
(CO.I)—semigroups on . We then use the perturbation Theorem 1.4 to find the
(Co.l)—reversed evolution system V(s,t) enerated by the family fA(t)+B(t)it;\
using Theorem 2.2 we are able to write the unique solution of (3.1%) as an
evolution solution.

Theorem 3. . Under the above conditions on a(x.y), b{(x.y). -~ and M = (M()t\ﬂ

there exists a unique (Co.l)—reversed evolution system {V(s.t): 0¢s<t<=} on ¢

such that the stochastic evolution equation (3.13) has a unique ¢'-valued

Ml
A
N

elee et
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solution which is a ¢ '-valued Gaussian . . = = .~ b ioven o Lyomne
evolution solution

bt = 17! , T
St V'(t.0) . + fo v (t,s)dMS.

Moreover for any p>6 € e C([O.w)2¢$) a.s. and for t20

(3.27) ft[¢]=t[V(O.t)¢] JEII (V(s,t)¢.¢j>p dMs[¢j] for all ¢ ¢ ¢

¢ ¢ is a complete ortoarorsal oset o irob

where {¢. )J>1

In order to prove the above theorem we will verify the conditions of
Theorem 2.3. We first prove that the family (A(t)}t>o is stable on ¢.

Proposition 3.1. The family of operators {A(t))t>0 defined by (3.20)

uniformly stable on ¢ with respect to the norms given by (3.23).

Proof. We first show that for each t20 A(t) maps ¢ into ¢ and A(t) e £($.¢):
Let ¢e® and n20, then from (3.20) we have that

DX(vA(£)8)(x) = DX (w(x)a(x. )% (x)) + DX(w(x)B(x. )8l (x)).
Then since a(x.t) and B(x.t) are C (RXR+) functions with bounded derivatives in
x of all order, for eachT >0 there exist constants Kl(n,T) i=1.2 such that for

O<k¢n and 0<tg T

k
(3.38) [D*(vA()$)(x) | < K (n.T) : DY) ()| + Ky(n.T) OID LM ol
=0 i=

Next it is not difficult to show that for each 20 and n)»0 there exists a

constant c{€.n) such that

() :
[ Iln < c(€.n)||¢||n+e for all ¢ e ¢.
Then using (3..3) and (3.25) we have that for each 7>0 and n>0 there exists a
constant K3(n.T) such that

(329) Slé;zs ) [ [A(t)e] |n < K3(n.T)||¢l |n+2 for all ¢ed

which implies A(t) e 4(¢.9) 0.
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Next let t>0 be fixed but otherwise arbitrary and for ¢ ¢ ® and x ¢ P :}
define -
(3.%) (S, (s)8)(x) = E[#(X[(x))] s20
‘I

where ::
N,

-~ . T S t i S .t .
(3.1) X_(x) = x + [ a(X (x).t)d2_+ JJ B(X_ (x).t)dr ::'
and {%r}r>0 is a one dimensional Brownian motion. Observe that since a(x,t) i
and B(x.t) are bounded C -functions in Rxm+ then (3.531) has a unique solution. o
Also since for some constant K>0 fi‘
(2.32) la(x.t)] ¢ K, |B(x.t)] ¢ K x e R, t20, R
N

- "o~

using the fact that |y 1(x)l < dele x ¢ R (some constant d>0) and Lemma 5.7.; -
{'
in [5] we have that for ¢ ¢ ¢ :y
.t -1t t .t N

Ele(xi(x)) | = ENT (XS0 (x))$(X(x)) |

t -

<dllvelly o Ee XV e 530, xemr. 020, 3

i.e.. {3.30) is well defined. Moreover St(s)¢ is linear in ¢ and satisfies the N
semigroup property St(s1 + 52) = St(Sl)St(s2)' :S
%)

Next applying Ito's formula to (3 31) we have that for ¢ ¢ ¢ ~

t 1 , t >

(xL(x)) = o) S50 (xE(x))a(xE(x) . )d_ + TS(A()9) (XE(x))dr ~

s 0 r r r 0 r ®

and taking expectations in both sides of the last expression and using (3.3D) :;
we obtain that for ¢ ¢ ¢ and s>0 ;:
(3.33) (S,(s)$)(x) = #(x) + J(S (r)A(t)¢)(x)dr.
®
Next we shall prove that St(s) maps ¢ into ¢ and that it is a '

(Co.l)—semigroup on ¢ with infinitesimal generator A(t).

Using (3.23) and (3..5) we have that for ¢ ¢ ¢ and n20 .

« 2 ".
(3.34) s (s)ell = sup sup (1+x")"| D"(48 (s)¢)(x)]
t n t .

0<mén  xeR .

Applying Leibniz formula we have that for O{m¢{n there exists a constant e(n)20 :i:
-~

such that ,b
m Tor m-r !

\D (¢Gt(5)¢)(><)| ¢ e(n) I [Dw(x)|D (St(5)¢)(x)|- -

®

L e L T e T e e e e e e e e
N < -\’-:"-:‘J;' ':-"_-.‘:-f:‘a‘.- ‘- : . ".\ N '_'<.~_‘-..\‘.'-“'-'.' ~~..:~. "‘.-:'.:-"‘.‘“t““."‘;’:".\.ﬁ-:"':‘- """’.‘\"-"\:‘-"" 'h,,nq..' e hrY "':¢:_~ '-_\-.:.:__ . ‘:._
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and it is not difficult to show that there are positive constants c(n) and d(n)

such that

(3.33) ID"y(x)] ¢ c(n)e'lxl xeR, 0<r¢n
and

L3300 |Drw—1(x)| < d(n) eixI xeR, 0{r¢n.

Then for xeR and O<m¢n

m
(3.37) ID"(¥5,(s)#)(x)| < e(n)e(n) 2 ID"T(S (s)e)(x)].

r=0

Next using again Leibniz formula and Holder inequality we have that for O¢k<min
k k, -1 ot
ID™(S (s))(x) | = [E(D(v "ve) (X (=) ¢

k
(3.38)  e(m) I (BRI IDRED T i) B2

r=0

From (3.36) we have that for 0<r¢n

t
_ 21X (x) |
EDVI X)) ¢ dF(mEe S

and from (3.52) and Lemma 5.7.1 in [5] we obtain

t
2|Xs(x)l ¢ e2|x| + 2sK + 2 + 2K2s

Ee < s>0, t20, xeR.

Then for 0<r<n and s>0
- 2
(3.33) (E[D"y I(X;(x))|2)1/2 ¢ d(n)e|x|+1+(x+2x )s

On the other hand from Lemma 2.3 in [10] there exists a positive constant

b(n) such that

172
EJ/—El—ZT S _bulg— xelR, s>0.
| (X 0 157" (1+x%)"

Then using the last inequality and (3.23) and (3.23) we obtain that for 0<r<{n

(1+]xL (0 130 .
- r t 2.1/2 RN
o ELIDT(we) (x5 (x)) 12312 - E[(I+IX§(X)I2)QH D" (wo) (x (%)) 17772
S
< —Eiﬂlg—— [1é1]_ for all ¢ed. s>0.
(1+x )n n
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Hence using (3.39) and (3.10) in (3.358) we have that for some constant f(n) and

0<k<n

|D (s (s)¢)(x)| < ———L—l— I (K+2K )Sll¢|l for all ¢ed, xeP, s20.
(10x%)"

Next using (3.41) in (3.57) we have that for some positive constant g(n) and
0<m¢n
g ,2
(3.42) |Dm(¢St(s)¢)(x)| < —ELEI%— e(h+2h )S||¢|| for all ¢ed, xeR s>0.
n

(1+x5)"
Then from (3.54) and (3.42) we have that for any t>0

g_s
(34 3) |m4ﬂﬂgse“|wun for all ¢ed, s>0

where o= log(g(n))(K+2K2) is independent of s or t.

We now grove that for each t -0, 5.0(s), 5 :0 is a C_ -sendarcu :
N 2 ahd

L
‘

$' < s, then from (3.33) we have that for e D

St(s)¢>(x) -St(s')qb(x) = (S _(r)a(t}d) (x)dr.

t

0~

Hence for any 0<m<n

D“(V(x)<st(s)¢<;>-st(s')¢<x)> =

0~

Dm(VSt(r)A(t)Q)(x)dr

and using (3.42) and {3.272),

s 2
T L.t - ) K+l¥ or
ST Xy {3 (s) (%) - st(s'>:(x)))’ : ~J——~—E>K3(r T\!$,. .;] re( ir.
(L+%7) nre g
Then for any n-v and - &
3 ( 2
. K+2K Jr
'3 (s)5 -3 (g'yal Ty ! [ re dr
sperr=s sl gkl ]
- aS S' -~ 5,
Ci ‘."'1"1‘}’ J.'.".f D R T T T P U P T T T -
AL RS A R .,-‘-'--.-\-.--_r...-.--.~ e T T T e e AT e R R S
ol LIS A AT et T g e g T e e T T B N
$~. LRV \-_i.. FTP - D R S, T R AN
BSOS I NN NN A NS APPSR AT Wity \_-,-‘ S O o) e .
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&

Los., *3 tsi: s ° ! 15 a C =-semigrour o 7 oand by (3.43) it is a (¢ ,1,-5-miar o

We finally prove that for each t =0, A(t) is the infinitesimal generator
of {St(s): sz} on $: From (3.33) for b« ® and s> 0
s
S (s)0-¢ = fst(r)A(t)(Ddr.
0

Then for each n2 0, using the continuity of the map S"St(S)Q’) in ? we have that,

for each ¢ ¢ 9,

i

Hace)d —%(stmw— )|

S
1
| = llae)e - gj;St(r)A(t)q)dan

IN

1
S HSt(r)A(t)q)—A(t)d)Hndr >0

O 0

A(g): = limit
srt

T

(s_(s)d-0) (limit in ¢) t 20,

Hence A(t) is the infinitesimal generator on 9 of the (Co,l)—semigroup ;St(s): <
Finally from (3.43) and Proposition 1.3 the family {A(t)}t>o is a uniformly

stable family of continuous linear operators on $. The proof of the

rrercsition 1s complete.

Proof of Theorem 3.2.

Using (3.24) and similar arguments to those in proving (3.2S) and (3.29)
it is easy to show that for each T>0 and n>0 there exists K4(n.T )>0 such that
for t,t'e[0,T]

(34 lA(c}¢—A(t')¢|n < K4(n,T)‘¢fn+4 h (t.t') for all ged
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[ |
h (t.t) = gfm(1+x2)‘2] DX(a(x. t)-a(x.t')) |%dx 1
k=0 y

n
v 3 S 2D 1) - Blx.t)) |Pax.
k=0

Also it is not difficult to show that for n»2 there exist positive constants

Ks(n,T) and Ke(n,T) such that for t,t' e [0,T] and ¢ed

15.45) B(t)el < K (nT)lel
(3.46) B(t)$ - B(t')s] < Kg(nT)lol s(r.t').
where

g(t.t') = fpe' [u(y. O)-u(y. v') |dy
+fpe’ la(y. tu(t.y) - aly.t)u(y. t') ldy.

Notice that since all derivatives in x of a(x,t) and B{x.t) are bounded in
x and continuous in t, by the dominated convergence theorem h(t,t')-0 as t'-t.
Also from Theorem 5.7.2 in [5], for each T>0

fmelylu(y.t)dy o 0<e(T.
Then by the dominated convergence theorem ¢ (t,t') =0 as t - t'.

Next by Proposition 3.1 and (3. M) the family {A(t)}t>0 satisfies
conditions (a) and (b) in Theorem 1.3 and it generates a unique (CO.I)—reversed
evolution system {T(s.t): 0<s<{t<=} on ¢. From (3.45) and (3.46) the family
{B(t))t>0 satisfies the conditions of Theorem 1.4 and the family {A(t)+B(t)}t20
generates a unique (Co.l)—reversed evolution system {V(s.t): 0¢s{t<=} on ¢.

The theorem then follows applying Theorem 2.3.
Finally from (3.:2) for each t>0 there exists K7(t)>0 such that for ¢c¢
E(M, [61)%¢ K (0) o],
Then by (3. 14) and Theorem 2.2, for any integer p>6 we obtain § e C([O.m):¢s )

a.s. and (3.27). a

In {18) Tanaka and Hitsuda consider a simple ditfusion model of inter-
acting particles. The stochastic evolution eaquation ot their example can be

solved in the framework of a special compatible family ot the form A+Bit), as in

Paamples 301 and 5.2,
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